python的多進(jìn)程性能要明顯優(yōu)于多線程,因?yàn)閏python的GIL對(duì)性能做了約束。
Python是運(yùn)行在解釋器中的語(yǔ)言,查找資料知道,python中有一個(gè)全局鎖(GIL),在使用多進(jìn)程(Thread)的情況下,不能發(fā)揮多核的優(yōu)勢(shì)。而使用多進(jìn)程(Multiprocess),則可以發(fā)揮多核的優(yōu)勢(shì)真正地提高效率。
對(duì)比實(shí)驗(yàn)
資料顯示,如果多線程的進(jìn)程是CPU密集型的,那多線程并不能有多少效率上的提升,相反還可能會(huì)因?yàn)榫€程的頻繁切換,導(dǎo)致效率下降,推薦使用多進(jìn)程;如果是IO密集型,多線程進(jìn)程可以利用IO阻塞等待時(shí)的空閑時(shí)間執(zhí)行其他線程,提升效率。所以我們根據(jù)實(shí)驗(yàn)對(duì)比不同場(chǎng)景的效率
操作系統(tǒng) | CPU | 內(nèi)存 | 硬盤 |
---|---|---|---|
Windows 10 | 雙核 | 8GB | 機(jī)械硬盤 |
(1)引入所需要的模塊
import requests import time from threading import Thread from multiprocessing import Process
(2)定義CPU密集的計(jì)算函數(shù)
def count(x, y): # 使程序完成150萬(wàn)計(jì)算 c = 0 while c < 500000: c += 1 x += x y += y
(3)定義IO密集的文件讀寫函數(shù)
def write(): f = open("test.txt", "w") for x in range(5000000): f.write("testwrite\n") f.close() def read(): f = open("test.txt", "r") lines = f.readlines() f.close()
(4) 定義網(wǎng)絡(luò)請(qǐng)求函數(shù)
_head = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'} url = "http://www.tieba.com" def http_request(): try: webPage = requests.get(url, headers=_head) html = webPage.text return {"context": html} except Exception as e: return {"error": e}
(5)測(cè)試線性執(zhí)行IO密集操作、CPU密集操作所需時(shí)間、網(wǎng)絡(luò)請(qǐng)求密集型操作所需時(shí)間
# CPU密集操作 t = time.time() for x in range(10): count(1, 1) print("Line cpu", time.time() - t) # IO密集操作 t = time.time() for x in range(10): write() read() print("Line IO", time.time() - t) # 網(wǎng)絡(luò)請(qǐng)求密集型操作 t = time.time() for x in range(10): http_request() print("Line Http Request", time.time() - t)
輸出
CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015
IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293
網(wǎng)絡(luò)請(qǐng)求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697
?(6)測(cè)試多線程并發(fā)執(zhí)行CPU密集操作所需時(shí)間
counts = [] t = time.time() for x in range(10): thread = Thread(target=count, args=(1,1)) counts.append(thread) thread.start() e = counts.__len__() while True: for th in counts: if not th.is_alive(): e -= 1 if e <= 0: break print(time.time() - t)
Output: 99.9240000248 、101.26400017738342、102.32200002670288
?(7)測(cè)試多線程并發(fā)執(zhí)行IO密集操作所需時(shí)間
def io(): write() read() t = time.time() ios = [] t = time.time() for x in range(10): thread = Thread(target=count, args=(1,1)) ios.append(thread) thread.start() e = ios.__len__() while True: for th in ios: if not th.is_alive(): e -= 1 if e <= 0: break print(time.time() - t)
Output: 25.69700002670288、24.02400016784668
?(8)測(cè)試多線程并發(fā)執(zhí)行網(wǎng)絡(luò)密集操作所需時(shí)間
t = time.time() ios = [] t = time.time() for x in range(10): thread = Thread(target=http_request) ios.append(thread) thread.start() e = ios.__len__() while True: for th in ios: if not th.is_alive(): e -= 1 if e <= 0: break print("Thread Http Request", time.time() - t)
Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748
(9)測(cè)試多進(jìn)程并發(fā)執(zhí)行CPU密集操作所需時(shí)間
counts = [] t = time.time() for x in range(10): process = Process(target=count, args=(1,1)) counts.append(process) process.start() e = counts.__len__() while True: for th in counts: if not th.is_alive(): e -= 1 if e <= 0: break print("Multiprocess cpu", time.time() - t)
Output: 54.342000007629395、53.437999963760376
?(10)測(cè)試多進(jìn)程并發(fā)執(zhí)行IO密集型操作
t = time.time() ios = [] t = time.time() for x in range(10): process = Process(target=io) ios.append(process) process.start() e = ios.__len__() while True: for th in ios: if not th.is_alive(): e -= 1 if e <= 0: break print("Multiprocess IO", time.time() - t)
Output: 12.509000062942505、13.059000015258789
?(11)測(cè)試多進(jìn)程并發(fā)執(zhí)行Http請(qǐng)求密集型操作
t = time.time() httprs = [] t = time.time() for x in range(10): process = Process(target=http_request) ios.append(process) process.start() e = httprs.__len__() while True: for th in httprs: if not th.is_alive(): e -= 1 if e <= 0: break print("Multiprocess Http Request", time.time() - t)
Output: 0.5329999923706055、0.4760000705718994
?實(shí)驗(yàn)結(jié)果
CPU密集型操作 | IO密集型操作 | 網(wǎng)絡(luò)請(qǐng)求密集型操作 | |
---|---|---|---|
線性操作 | 94.91824996469 | 22.46199995279 | 7.3296000004 |
多線程操作 | 101.1700000762 | 24.8605000973 | 0.5053332647 |
多進(jìn)程操作 | 53.8899999857 | 12.7840000391 | 0.5045000315 |
通過上面的結(jié)果,我們可以看到:
多線程在IO密集型的操作下似乎也沒有很大的優(yōu)勢(shì)(也許IO操作的任務(wù)再繁重一些就能體現(xiàn)出優(yōu)勢(shì)),在CPU密集型的操作下明顯地比單線程線性執(zhí)行性能更差,但是對(duì)于網(wǎng)絡(luò)請(qǐng)求這種忙等阻塞線程的操作,多線程的優(yōu)勢(shì)便非常顯著了
多進(jìn)程無論是在CPU密集型還是IO密集型以及網(wǎng)絡(luò)請(qǐng)求密集型(經(jīng)常發(fā)生線程阻塞的操作)中,都能體現(xiàn)出性能的優(yōu)勢(shì)。不過在類似網(wǎng)絡(luò)請(qǐng)求密集型的操作上,與多線程相差無幾,但卻更占用CPU等資源,所以對(duì)于這種情況下,我們可以選擇多線程來執(zhí)行
以上所述是小編給大家介紹的Python單線程多線程和多進(jìn)程效率對(duì)比詳解整合,希望對(duì)大家有所幫助,如果大家有任何疑問請(qǐng)給我留言,小編會(huì)及時(shí)回復(fù)大家的。在此也非常感謝大家對(duì)腳本之家網(wǎng)站的支持!
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元
