日韩久久久精品,亚洲精品久久久久久久久久久,亚洲欧美一区二区三区国产精品 ,一区二区福利

母函數詳解

系統 2061 0

母函數(Generating function)詳解


在數學中,某個序列的母函數是一種形式冪級數,其每一項的系數可以提供關于這個序列的信息。使用母函數解決問題的方法稱為母函數方法。


母函數可分為很多種,包括普通母函數、指數母函數、L級數、貝爾級數和狄利克雷級數。對每個序列都可以寫出以上每個類型的一個母函數。構造母函數的目的一般是為了解決某個特定的問題,因此選用何種母函數視乎序列本身的特性和問題的類型。


這里先給出兩句話,不懂的可以等看完這篇文章再回過頭來看:


"把組合問題的加法法則和冪級數的t的乘冪的相加對應起來"


"母函數的思想很簡單—就是把離散數列和冪級數一一對應起來,把離散數列間的相互結合關系對應成為冪級數間的運算關系,最后由冪級數形式來確定離散數列的構造. "


我們首先來看下這個多項式乘法:




















由此可以看出:


1. x的系數是a1,a2,…an的單個組合的全體。


2. x2的系數是a1,a2,…an的兩個組合的全體。


………


n. xn的系數是a1,a2,….an的n個組合的全體(只有1個)。


由此得到:


?


母函數的定義:






對于序列a0,a1,a2,…構造一函數:


稱函數G(x)是序列a0,a1,a2,…的母函數


這里先給出2個例子,等會再結合題目分析:


第一種:


?


有1克、2克、3克、4克的砝碼各一枚,能稱出哪幾種重量?每種重量各有幾種可能方案??


考慮用母函數來接吻這個問題:


我們假設x表示砝碼,x的指數表示砝碼的重量,這樣:


1個1克的砝碼可以用函數1+x表示,


1個2克的砝碼可以用函數1+x2表示,


1個3克的砝碼可以用函數1+x3表示,


1個4克的砝碼可以用函數1+x4表示,


上面這四個式子懂嗎?


我們拿1+x2來說,前面已經說過,x表示砝碼,x的指數表示重量,即這里就是一個質量為2的砝碼,那么前面的1表示什么?1代表重量為2的砝碼數量為0個。(理解!)


不知道大家理解沒,我們這里結合前面那句話:


"把組合問題的加法法則和冪級數的t的乘冪的相加對應起來"


1+x2表示了兩種情況:1表示質量為2的砝碼取0個的情況,x2表示質量為2的砝碼取1個的情況。


這里說下各項系數的意義:


在x前面的系數a表示相應質量的砝碼取a個,而1就表示相應砝碼取0個,這里可不能簡單的認為相應砝碼取0個就該是0*x2(想下為何?結合數學式子)。


所以,前面說的那句話的意義大家可以理解了吧?


幾種砝碼的組合可以稱重的情況,可以用以上幾個函數的乘積表示:


(1+x)(1+x2)(1+x3)(1+x4)


=(1+x+x2+x3)(1+x3+x4+x7)


=1+x+x2+2x3+2x4+2x5+2x6+2x7+x8+x9+x10?


從上面的函數知道:可稱出從1克到10克,系數便是方案數。(!!!經典!!!)


? ? 例如右端有2x5 項,即稱出5克的方案有2:5=3+2=4+1;同樣,6=1+2+3=4+2;10=1+2+3+4。


? ? 故稱出6克的方案有2,稱出10克的方案有1。


接著上面,接下來是第二種情況:


求用1分、2分、3分的郵票貼出不同數值的方案數:


大家把這種情況和第一種比較有何區別?第一種每種是一個,而這里每種是無限的。




以展開后的x4為例,其系數為4,即4拆分成1、2、3之和的拆分數為4;


即 :4=1+1+1+1=1+1+2=1+3=2+2


這里再引出兩個概念整數拆分和拆分數:


?


所謂整數拆分即把整數分解成若干整數的和(相當于把n個無區別的球放到n個無標志的盒子,盒子允許空,也允許放多于一個球)。


整數拆分成若干整數的和,辦法不一,不同拆分法的總數叫做拆分數。


現在以上面的第二種情況每種種類個數無限為例,給出模板:

    #include<iostream>

using namespace std;

 

const int _max = 121;

//c1是保存各項質量砝碼可以組合的數目

//c2是中間量,保存沒一次的情況

int c1[_max], c2[_max];  

int main()

{   //int n,i,j,k;

    int nNum;  //

    int i, j, k;

 

    while(cin >> nNum && nNum) 

    {

       for(i=0; i<=nNum; ++i)   // ---- ①

       {

           c1[i] = 1;

           c2[i] = 0;

       }

       for(i=2; i<=nNum; ++i)   // ----- ②

       {

 

           for(j=0; j<=nNum; ++j)   // ----- ③

              for(k=0; k+j<=nNum; k+=i)  // ---- ④

              {

                  c2[j+k] += c1[j];

              }

           for(j=0; j<=nNum; ++j)     // ---- ⑤

           {

              c1[j] = c2[j];

              c2[j] = 0;

           }

       }

       cout << c1[nNum] << endl;

    }

    return 0;

}

 
  










我們來解釋下上面標志的各個地方:


① 、首先對c1初始化,由第一個表達式(1+x+x2+..xn)初始化,把質量從0到n的所有砝碼都初始化為1.


?


② 、 i從2到n遍歷,這里i就是指第i個表達式,上面給出的第二種母函數關系式里,每一個括號括起來的就是一個表達式。


?


?


③、j 從0到n遍歷,這里j就是只一個表達式里第j個變量,比如在第二個表達式里:(1+x2+x4....)里,第j個就是x2*j.


?


③ k表示的是第j個指數,所以k每次增i(因為第i個表達式的增量是i)。


?


④ 、把c2的值賦給c1,而把c2初始化為0,因為c2每次是從一個表達式中開始的


?


咱們趕快趁熱打鐵,來幾道題目:


(相應題目解析均在相應的代碼里分析)


1. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1028


代碼:http://www.wutianqi.com/?p=587


這題大家看看簡單不?把上面的模板理解了,這題就是小Case!


?


看看這題:


2. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1398


代碼:http://www.wutianqi.com/?p=590


要說和前一題的區別,就只需要改2個地方。 在i遍歷表達式時(可以參考我的資料---《母函數詳解》),把i<=nNum改成了i*i<=nNum,其次在k遍歷指數時把k+=i變成了k+=i*i; Ok,說來說去還是套模板~~~


?


3. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1085


代碼:http://www.wutianqi.com/?p=592


這題終于變化了一點,但是萬變不離其中。


大家好好分析下,結合代碼就會懂了。


?


4. ?題目:http://acm.hdu.edu.cn/showproblem.php?pid=1171


代碼:http://www.wutianqi.com/?p=594


?


?


?


還有一些題目,大家有時間自己做做:


HDOJ:1709,1028、1709、1085、1171、1398、2069、2152


附:


1.在維基百科里講到了普通母函數、指數母函數、L級數、貝爾級數和狄利克雷級數:


http://zh.wikipedia.org/zh-tw/%E6%AF%8D%E5%87%BD%E6%95%B0


2.Matrix67大牛那有篇文章:什么是生成函數:


http://www.matrix67.com/blog/archives/120


3.大家可以看看杭電的ACM課件的母函數那篇,我這里的圖片以及一些內容都引至那。

母函數詳解


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 普定县| 库伦旗| 安溪县| 扶绥县| 博客| 建宁县| 林口县| 福州市| 沽源县| 丹寨县| 内黄县| 达尔| 博爱县| 三门峡市| 南通市| 镇平县| 沅陵县| 金华市| 红河县| 江口县| 香河县| 石门县| 桐梓县| 论坛| 杨浦区| 静宁县| 尤溪县| 深圳市| 桂平市| 亚东县| 陇西县| 平远县| 湘潭市| 交口县| 长子县| 息烽县| 惠来县| 乳山市| 丹东市| 嵩明县| 建阳市|