日韩久久久精品,亚洲精品久久久久久久久久久,亚洲欧美一区二区三区国产精品 ,一区二区福利

ML| EM

系統 2560 0

What's xxx

The EM algorithm is used to find the maximum likelihood parameters of a statistical model in cases where the equations cannot be solved directly. Typically these models involve latent variables in addition to unknown parameters and known data observations. That is, either there are missing values among the data, or the model can be formulated more simply by assuming the existence of additional unobserved data points.?

The motivation is as follows. If we know the value of the parameters $\boldsymbol\theta$, we can usually find the value of the latent variables $\mathbf{Z}$ by maximizing the log-likelihood over all possible values of $\mathbf{Z}$, either simply by iterating over $\mathbf{Z}$ or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables $\mathbf{Z}$, we can find an estimate of the parameters $\boldsymbol\theta$ fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both $\boldsymbol\theta$ and $\mathbf{Z}$ are unknown:

  1. First, initialize the parameters $\boldsymbol\theta$ to some random values.
  2. Compute the best value for $\mathbf{Z}$ given these parameter values.
  3. Then, use the just-computed values of $\mathbf{Z}$ to compute a better estimate for the parameters $\boldsymbol\theta$. Parameters associated with a particular value of $\mathbf{Z}$ will use only those data points whose associated latent variable has that value.
  4. Iterate steps 2 and 3 until convergence.

The algorithm as just described monotonically approaches a local minimum of the cost function, and is commonly called hard EM . The k-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for $\mathbf{Z}$ given the current parameter values and averaging only over the set of data points associated with a particular value of $\mathbf{Z}$, instead determining the probability of each possible value of $\mathbf{Z}$ for each data point, and then using the probabilities associated with a particular value of $\mathbf{Z}$ to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM.?

With the ability to deal with missing data and observe unidentified variables, EM is becoming a useful tool to price and manage risk of a portfolio.

Algorithm

Given a statistical model consisting of a set $\mathbf{X}$ of observed data, a set of unobserved latent data or missing values $\mathbf{Z}$, and a vector of unknown parameters $\boldsymbol\theta$, along with a likelihood function $L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta)$, the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data

$L(\boldsymbol\theta; \mathbf{X}) = p(\mathbf{X}|\boldsymbol\theta) = \sum_{\mathbf{Z}} p(\mathbf{X},\mathbf{Z}|\boldsymbol\theta) $
However, this quantity is often intractable (e.g. if $\mathbf{Z}$ is a sequence of events, so that the number of values grows exponentially with the sequence length, making the exact calculation of the sum extremely difficult).

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

1. Expectation step (E step) : Calculate the expected value of the log likelihood function, with respect to the conditional distribution of $\mathbf{Z}$ given $\mathbf{X}$ under the current estimate of the parameters $\boldsymbol\theta^{(t)}$:
$Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) = \operatorname{E}_{\mathbf{Z}|\mathbf{X},\boldsymbol\theta^{(t)}}\left[ \log L (\boldsymbol\theta;\mathbf{X},\mathbf{Z}) \right] \,$
2. Maximization step (M step): Find the parameter that maximizes this quantity:
$\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta}{\operatorname{arg\,max}} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \, $
Note that in typical models to which EM is applied:

  • The observed data points $\mathbf{X}$ may be discrete (taking values in a finite or countably infinite set) or continuous (taking values in an uncountably infinite set). There may in fact be a vector of observations associated with each data point.
  • The missing values (aka latent variables) $\mathbf{Z}$ are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  • The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

ML| EM


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 榆社县| 光山县| 涿鹿县| 崇礼县| 中卫市| 亳州市| 邹平县| 阳江市| 固安县| 绥棱县| 饶阳县| 隆德县| 独山县| 班戈县| 扬州市| 桑日县| 漾濞| 安吉县| 衡阳市| 游戏| 靖江市| 禄劝| 富裕县| 宿松县| 唐山市| 新巴尔虎左旗| 甘泉县| 南召县| 海口市| 汕头市| 洛南县| 封开县| 瓦房店市| 阳新县| 平遥县| 宝兴县| 巴塘县| 横峰县| 手游| 基隆市| 柘城县|