日韩久久久精品,亚洲精品久久久久久久久久久,亚洲欧美一区二区三区国产精品 ,一区二区福利

嵌入式系統(tǒng) Boot Loader 技術(shù)內(nèi)幕

系統(tǒng) 1910 0

本文轉(zhuǎn)載自: http://www.ibm.com/developerworks/cn/linux/l-btloader/

1. 引言

在專用的嵌入式板子運(yùn)行 GNU/Linux 系統(tǒng)已經(jīng)變得越來越流行。一個嵌入式 Linux 系統(tǒng)從軟件的角度看通常可以分為四個層次:

1. 引導(dǎo)加載程序。 包括固化在固件(firmware)中的 boot 代碼(可選),和 Boot Loader 兩大部分。

2.? Linux 內(nèi)核。 特定于嵌入式板子的定制內(nèi)核以及內(nèi)核的啟動參數(shù)。

3.? 文件系統(tǒng)。 包括根文件系統(tǒng)和建立于 Flash 內(nèi)存設(shè)備之上文件系統(tǒng)。通常用 ram disk 來作為 root fs。

4.? 用戶應(yīng)用程序。 特定于用戶的應(yīng)用程序。有時在用戶應(yīng)用程序和內(nèi)核層之間可能還會包括一個嵌入式圖形用戶界面。常用的嵌入式 GUI 有:MicroWindows 和 MiniGUI 懂。

引導(dǎo)加載程序是系統(tǒng)加電后運(yùn)行的第一段軟件代碼。回憶一下 PC 的體系結(jié)構(gòu)我們可以知道,PC 機(jī)中的引導(dǎo)加載程序由 BIOS(其本質(zhì)就是一段固件程序)和位于硬盤 MBR 中的 OS Boot Loader(比如,LILO 和 GRUB 等)一起組成。BIOS 在完成硬件檢測和資源分配后,將硬盤 MBR 中的 Boot Loader 讀到系統(tǒng)的 RAM 中,然后將控制權(quán)交給 OS Boot Loader。Boot Loader 的主要運(yùn)行任務(wù)就是將內(nèi)核映象從硬盤上讀到 RAM 中,然后跳轉(zhuǎn)到內(nèi)核的入口點去運(yùn)行,也即開始啟動操作系統(tǒng)。

而在嵌入式系統(tǒng)中,通常并沒有像 BIOS 那樣的固件程序(注,有的嵌入式 CPU 也會內(nèi)嵌一段短小的啟動程序),因此整個系統(tǒng)的加載啟動任務(wù)就完全由 Boot Loader 來完成。比如在一個基于 ARM7TDMI core 的嵌入式系統(tǒng)中,系統(tǒng)在上電或復(fù)位時通常都從地址 0x00000000 處開始執(zhí)行,而在這個地址處安排的通常就是系統(tǒng)的 Boot Loader 程序。

本文將從 Boot Loader 的概念、Boot Loader 的主要任務(wù)、Boot Loader 的框架結(jié)構(gòu)以及 Boot Loader 的安裝等四個方面來討論嵌入式系統(tǒng)的 Boot Loader。

?

2. Boot Loader 的概念

簡單地說,Boot Loader 就是在操作系統(tǒng)內(nèi)核運(yùn)行之前運(yùn)行的一段小程序。通過這段小程序,我們可以初始化硬件設(shè)備、建立內(nèi)存空間的映射圖,從而將系統(tǒng)的軟硬件環(huán)境帶到一個合適的狀態(tài),以便為最終調(diào)用操作系統(tǒng)內(nèi)核準(zhǔn)備好正確的環(huán)境。

通常,Boot Loader 是嚴(yán)重地依賴于硬件而實現(xiàn)的,特別是在嵌入式世界。因此,在嵌入式世界里建立一個通用的 Boot Loader 幾乎是不可能的。盡管如此,我們?nèi)匀豢梢詫?Boot Loader 歸納出一些通用的概念來,以指導(dǎo)用戶特定的 Boot Loader 設(shè)計與實現(xiàn)。

1. Boot Loader 所支持的 CPU 和嵌入式板

每種不同的 CPU 體系結(jié)構(gòu)都有不同的 Boot Loader。有些 Boot Loader 也支持多種體系結(jié)構(gòu)的 CPU,比如 U-Boot 就同時支持 ARM 體系結(jié)構(gòu)和MIPS 體系結(jié)構(gòu)。除了依賴于 CPU 的體系結(jié)構(gòu)外,Boot Loader 實際上也依賴于具體的嵌入式板級設(shè)備的配置。這也就是說,對于兩塊不同的嵌入式板而言,即使它們是基于同一種 CPU 而構(gòu)建的,要想讓運(yùn)行在一塊板子上的 Boot Loader 程序也能運(yùn)行在另一塊板子上,通常也都需要修改 Boot Loader 的源程序。

2. Boot Loader 的安裝媒介(Installation Medium)

系統(tǒng)加電或復(fù)位后,所有的 CPU 通常都從某個由 CPU 制造商預(yù)先安排的地址上取指令。比如,基于 ARM7TDMI core 的 CPU 在復(fù)位時通常都從地址 0x00000000 取它的第一條指令。而基于 CPU 構(gòu)建的嵌入式系統(tǒng)通常都有某種類型的固態(tài)存儲設(shè)備(比如:ROM、EEPROM 或 FLASH 等)被映射到這個預(yù)先安排的地址上。因此在系統(tǒng)加電后,CPU 將首先執(zhí)行 Boot Loader 程序。

下圖1就是一個同時裝有 Boot Loader、內(nèi)核的啟動參數(shù)、內(nèi)核映像和根文件系統(tǒng)映像的固態(tài)存儲設(shè)備的典型空間分配結(jié)構(gòu)圖。


圖1 固態(tài)存儲設(shè)備的典型空間分配結(jié)構(gòu)
嵌入式系統(tǒng) Boot Loader 技術(shù)內(nèi)幕 ?

3. 用來控制 Boot Loader 的設(shè)備或機(jī)制

主機(jī)和目標(biāo)機(jī)之間一般通過串口建立連接,Boot Loader 軟件在執(zhí)行時通常會通過串口來進(jìn)行 I/O,比如:輸出打印信息到串口,從串口讀取用戶控制字符等。

4. Boot Loader 的啟動過程是單階段(Single Stage)還是多階段(Multi-Stage)

通常多階段的 Boot Loader 能提供更為復(fù)雜的功能,以及更好的可移植性。從固態(tài)存儲設(shè)備上啟動的 Boot Loader 大多都是 2 階段的啟動過程,也即啟動過程可以分為 stage 1 和 stage 2 兩部分。而至于在 stage 1 和 stage 2 具體完成哪些任務(wù)將在下面討論。

5. Boot Loader 的操作模式 (Operation Mode)

大多數(shù) Boot Loader 都包含兩種不同的操作模式:"啟動加載"模式和"下載"模式,這種區(qū)別僅對于開發(fā)人員才有意義。但從最終用戶的角度看,Boot Loader 的作用就是用來加載操作系統(tǒng),而并不存在所謂的啟動加載模式與下載工作模式的區(qū)別。

啟動加載(Boot loading)模式: 這種模式也稱為"自主"(Autonomous)模式。也即 Boot Loader 從目標(biāo)機(jī)上的某個固態(tài)存儲設(shè)備上將操作系統(tǒng)加載到 RAM 中運(yùn)行,整個過程并沒有用戶的介入。這種模式是 Boot Loader 的正常工作模式,因此在嵌入式產(chǎn)品發(fā)布的時侯,Boot Loader 顯然必須工作在這種模式下。

下載(Downloading)模式: 在這種模式下,目標(biāo)機(jī)上的 Boot Loader 將通過串口連接或網(wǎng)絡(luò)連接等通信手段從主機(jī)(Host)下載文件,比如:下載內(nèi)核映像和根文件系統(tǒng)映像等。從主機(jī)下載的文件通常首先被 Boot Loader 保存到目標(biāo)機(jī)的 RAM 中,然后再被 Boot Loader 寫到目標(biāo)機(jī)上的FLASH 類固態(tài)存儲設(shè)備中。Boot Loader 的這種模式通常在第一次安裝內(nèi)核與根文件系統(tǒng)時被使用;此外,以后的系統(tǒng)更新也會使用 Boot Loader 的這種工作模式。工作于這種模式下的 Boot Loader 通常都會向它的終端用戶提供一個簡單的命令行接口。

像 Blob 或 U-Boot 等這樣功能強(qiáng)大的 Boot Loader 通常同時支持這兩種工作模式,而且允許用戶在這兩種工作模式之間進(jìn)行切換。比如,Blob 在啟動時處于正常的啟動加載模式,但是它會延時 10 秒等待終端用戶按下任意鍵而將 blob 切換到下載模式。如果在 10 秒內(nèi)沒有用戶按鍵,則 blob 繼續(xù)啟動 Linux 內(nèi)核。

6. BootLoader 與主機(jī)之間進(jìn)行文件傳輸所用的通信設(shè)備及協(xié)議

最常見的情況就是,目標(biāo)機(jī)上的 Boot Loader 通過串口與主機(jī)之間進(jìn)行文件傳輸,傳輸協(xié)議通常是 xmodem/ymodem/zmodem 協(xié)議中的一種。但是,串口傳輸?shù)乃俣仁怯邢薜模虼送ㄟ^以太網(wǎng)連接并借助 TFTP 協(xié)議來下載文件是個更好的選擇。

此外,在論及這個話題時,主機(jī)方所用的軟件也要考慮。比如,在通過以太網(wǎng)連接和 TFTP 協(xié)議來下載文件時,主機(jī)方必須有一個軟件用來的提供 TFTP 服務(wù)。

在討論了 BootLoader 的上述概念后,下面我們來具體看看 BootLoader 的應(yīng)該完成哪些任務(wù)。

?

3. Boot Loader 的主要任務(wù)與典型結(jié)構(gòu)框架

在繼續(xù)本節(jié)的討論之前,首先我們做一個假定,那就是:假定內(nèi)核映像與根文件系統(tǒng)映像都被加載到 RAM 中運(yùn)行。之所以提出這樣一個假設(shè)前提是因為,在嵌入式系統(tǒng)中內(nèi)核映像與根文件系統(tǒng)映像也可以直接在 ROM 或 Flash 這樣的固態(tài)存儲設(shè)備中直接運(yùn)行。但這種做法無疑是以運(yùn)行速度的犧牲為代價的。

從操作系統(tǒng)的角度看,Boot Loader 的總目標(biāo)就是正確地調(diào)用內(nèi)核來執(zhí)行。

另外,由于 Boot Loader 的實現(xiàn)依賴于 CPU 的體系結(jié)構(gòu),因此大多數(shù) Boot Loader 都分為 stage1 和 stage2 兩大部分。依賴于 CPU 體系結(jié)構(gòu)的代碼,比如設(shè)備初始化代碼等,通常都放在 stage1 中,而且通常都用匯編語言來實現(xiàn),以達(dá)到短小精悍的目的。而 stage2 則通常用C語言來實現(xiàn),這樣可以實現(xiàn)給復(fù)雜的功能,而且代碼會具有更好的可讀性和可移植性。

Boot Loader 的 stage1 通常包括以下步驟(以執(zhí)行的先后順序):

  • 硬件設(shè)備初始化。?

  • 為加載 Boot Loader 的 stage2 準(zhǔn)備 RAM 空間。?

  • 拷貝 Boot Loader 的 stage2 到 RAM 空間中。?

  • 設(shè)置好堆棧。?

  • 跳轉(zhuǎn)到 stage2 的 C 入口點。?

Boot Loader 的 stage2 通常包括以下步驟(以執(zhí)行的先后順序):

  • 初始化本階段要使用到的硬件設(shè)備。?

  • 檢測系統(tǒng)內(nèi)存映射(memory map)。?

  • 將 kernel 映像和根文件系統(tǒng)映像從 flash 上讀到 RAM 空間中。?

  • 為內(nèi)核設(shè)置啟動參數(shù)。?

  • 調(diào)用內(nèi)核。

3.1 Boot Loader 的 stage1

3.1.1 基本的硬件初始化

這是 Boot Loader 一開始就執(zhí)行的操作,其目的是為 stage2 的執(zhí)行以及隨后的 kernel 的執(zhí)行準(zhǔn)備好一些基本的硬件環(huán)境。它通常包括以下步驟(以執(zhí)行的先后順序):

1.? 屏蔽所有的中斷。 為中斷提供服務(wù)通常是 OS 設(shè)備驅(qū)動程序的責(zé)任,因此在 Boot Loader 的執(zhí)行全過程中可以不必響應(yīng)任何中斷。中斷屏蔽可以通過寫 CPU 的中斷屏蔽寄存器或狀態(tài)寄存器(比如 ARM 的 CPSR 寄存器)來完成。

2.? 設(shè)置 CPU 的速度和時鐘頻率。

3.? RAM 初始化。 包括正確地設(shè)置系統(tǒng)的內(nèi)存控制器的功能寄存器以及各內(nèi)存庫控制寄存器等。

4.? 初始化 LED。 典型地,通過 GPIO 來驅(qū)動 LED,其目的是表明系統(tǒng)的狀態(tài)是 OK 還是 Error。如果板子上沒有 LED,那么也可以通過初始化 UART 向串口打印 Boot Loader 的 Logo 字符信息來完成這一點。

5.? 關(guān)閉 CPU 內(nèi)部指令/數(shù)據(jù) cache。

3.1.2 為加載 stage2 準(zhǔn)備 RAM 空間

為了獲得更快的執(zhí)行速度,通常把 stage2 加載到 RAM 空間中來執(zhí)行,因此必須為加載 Boot Loader 的 stage2 準(zhǔn)備好一段可用的 RAM 空間范圍。

由于 stage2 通常是 C 語言執(zhí)行代碼,因此在考慮空間大小時,除了 stage2 可執(zhí)行映象的大小外,還必須把堆棧空間也考慮進(jìn)來。此外,空間大小最好是 memory page 大小(通常是 4KB)的倍數(shù)。一般而言,1M 的 RAM 空間已經(jīng)足夠了。具體的地址范圍可以任意安排,比如 blob 就將它的 stage2 可執(zhí)行映像安排到從系統(tǒng) RAM 起始地址 0xc0200000 開始的 1M 空間內(nèi)執(zhí)行。但是,將 stage2 安排到整個 RAM 空間的最頂 1MB(也即(RamEnd-1MB) - RamEnd)是一種值得推薦的方法。

為了后面的敘述方便,這里把所安排的 RAM 空間范圍的大小記為:stage2_size(字節(jié)),把起始地址和終止地址分別記為:stage2_start 和 stage2_end(這兩個地址均以 4 字節(jié)邊界對齊)。因此:

            stage2_end=stage2_start+stage2_size


          

?

另外,還必須確保所安排的地址范圍的的確確是可讀寫的 RAM 空間,因此,必須對你所安排的地址范圍進(jìn)行測試。具體的測試方法可以采用類似于 blob 的方法,也即:以 memory page 為被測試單位,測試每個 memory page 開始的兩個字是否是可讀寫的。為了后面敘述的方便,我們記這個檢測算法為:test_mempage,其具體步驟如下:

1. 先保存 memory page 一開始兩個字的內(nèi)容。

2. 向這兩個字中寫入任意的數(shù)字。比如:向第一個字寫入 0x55,第 2 個字寫入 0xaa。

3. 然后,立即將這兩個字的內(nèi)容讀回。顯然,我們讀到的內(nèi)容應(yīng)該分別是 0x55 和 0xaa。如果不是,則說明這個 memory page 所占據(jù)的地址范圍不是一段有效的 RAM 空間。

4. 再向這兩個字中寫入任意的數(shù)字。比如:向第一個字寫入 0xaa,第 2 個字中寫入 0x55。

5. 然后,立即將這兩個字的內(nèi)容立即讀回。顯然,我們讀到的內(nèi)容應(yīng)該分別是 0xaa 和 0x55。如果不是,則說明這個 memory page 所占據(jù)的地址范圍不是一段有效的 RAM 空間。

6. 恢復(fù)這兩個字的原始內(nèi)容。測試完畢。

為了得到一段干凈的 RAM 空間范圍,我們也可以將所安排的 RAM 空間范圍進(jìn)行清零操作。

3.1.3 拷貝 stage2 到 RAM 中

拷貝時要確定兩點:(1) stage2 的可執(zhí)行映象在固態(tài)存儲設(shè)備的存放起始地址和終止地址;(2) RAM 空間的起始地址。

3.1.4 設(shè)置堆棧指針 sp

堆棧指針的設(shè)置是為了執(zhí)行 C 語言代碼作好準(zhǔn)備。通常我們可以把 sp 的值設(shè)置為(stage2_end-4),也即在 3.1.2 節(jié)所安排的那個 1MB 的 RAM 空間的最頂端(堆棧向下生長)。

此外,在設(shè)置堆棧指針 sp 之前,也可以關(guān)閉 led 燈,以提示用戶我們準(zhǔn)備跳轉(zhuǎn)到 stage2。

經(jīng)過上述這些執(zhí)行步驟后,系統(tǒng)的物理內(nèi)存布局應(yīng)該如下圖2所示。

3.1.5 跳轉(zhuǎn)到 stage2 的 C 入口點

在上述一切都就緒后,就可以跳轉(zhuǎn)到 Boot Loader 的 stage2 去執(zhí)行了。比如,在 ARM 系統(tǒng)中,這可以通過修改 PC 寄存器為合適的地址來實現(xiàn)。


圖2 bootloader 的 stage2 可執(zhí)行映象剛被拷貝到 RAM 空間時的系統(tǒng)內(nèi)存布局
嵌入式系統(tǒng) Boot Loader 技術(shù)內(nèi)幕 ?

3.2 Boot Loader 的 stage2

正如前面所說,stage2 的代碼通常用 C 語言來實現(xiàn),以便于實現(xiàn)更復(fù)雜的功能和取得更好的代碼可讀性和可移植性。但是與普通 C 語言應(yīng)用程序不同的是,在編譯和鏈接 boot loader 這樣的程序時,我們不能使用 glibc 庫中的任何支持函數(shù)。其原因是顯而易見的。這就給我們帶來一個問題,那就是從那里跳轉(zhuǎn)進(jìn) main() 函數(shù)呢?直接把 main() 函數(shù)的起始地址作為整個 stage2 執(zhí)行映像的入口點或許是最直接的想法。但是這樣做有兩個缺點:1)無法通過main() 函數(shù)傳遞函數(shù)參數(shù);2)無法處理 main() 函數(shù)返回的情況。一種更為巧妙的方法是利用 trampoline(彈簧床)的概念。也即,用匯編語言寫一段trampoline 小程序,并將這段 trampoline 小程序來作為 stage2 可執(zhí)行映象的執(zhí)行入口點。然后我們可以在 trampoline 匯編小程序中用 CPU 跳轉(zhuǎn)指令跳入 main() 函數(shù)中去執(zhí)行;而當(dāng) main() 函數(shù)返回時,CPU 執(zhí)行路徑顯然再次回到我們的 trampoline 程序。簡而言之,這種方法的思想就是:用這段 trampoline 小程序來作為 main() 函數(shù)的外部包裹(external wrapper)。

下面給出一個簡單的 trampoline 程序示例(來自blob):

            .text

.globl _trampoline

_trampoline:

	bl	main

	/* if main ever returns we just call it again */

	b	_trampoline


          

?

可以看出,當(dāng) main() 函數(shù)返回后,我們又用一條跳轉(zhuǎn)指令重新執(zhí)行 trampoline 程序――當(dāng)然也就重新執(zhí)行 main() 函數(shù),這也就是 trampoline(彈簧床)一詞的意思所在。

3.2.1初始化本階段要使用到的硬件設(shè)備

這通常包括:(1)初始化至少一個串口,以便和終端用戶進(jìn)行 I/O 輸出信息;(2)初始化計時器等。

在初始化這些設(shè)備之前,也可以重新把 LED 燈點亮,以表明我們已經(jīng)進(jìn)入 main() 函數(shù)執(zhí)行。

設(shè)備初始化完成后,可以輸出一些打印信息,程序名字字符串、版本號等。

3.2.2 檢測系統(tǒng)的內(nèi)存映射(memory map)

所謂內(nèi)存映射就是指在整個 4GB 物理地址空間中有哪些地址范圍被分配用來尋址系統(tǒng)的 RAM 單元。比如,在 SA-1100 CPU 中,從 0xC000,0000 開始的 512M 地址空間被用作系統(tǒng)的 RAM 地址空間,而在 Samsung S3C44B0X CPU 中,從 0x0c00,0000 到 0x1000,0000 之間的 64M 地址空間被用作系統(tǒng)的 RAM 地址空間。雖然 CPU 通常預(yù)留出一大段足夠的地址空間給系統(tǒng) RAM,但是在搭建具體的嵌入式系統(tǒng)時卻不一定會實現(xiàn) CPU 預(yù)留的全部 RAM 地址空間。也就是說,具體的嵌入式系統(tǒng)往往只把 CPU 預(yù)留的全部 RAM 地址空間中的一部分映射到 RAM 單元上,而讓剩下的那部分預(yù)留 RAM 地址空間處于未使用狀態(tài)。? 由于上述這個事實,因此 Boot Loader 的 stage2 必須在它想干點什么 (比如,將存儲在 flash 上的內(nèi)核映像讀到 RAM 空間中) 之前檢測整個系統(tǒng)的內(nèi)存映射情況,也即它必須知道 CPU 預(yù)留的全部 RAM 地址空間中的哪些被真正映射到 RAM 地址單元,哪些是處于 "unused" 狀態(tài)的。

(1) 內(nèi)存映射的描述

可以用如下數(shù)據(jù)結(jié)構(gòu)來描述 RAM 地址空間中的一段連續(xù)(continuous)的地址范圍:

            typedef struct memory_area_struct {

	u32 start; /* the base address of the memory region */

	u32 size; /* the byte number of the memory region */

	int used;

} memory_area_t;


          

?

這段 RAM 地址空間中的連續(xù)地址范圍可以處于兩種狀態(tài)之一:(1)used=1,則說明這段連續(xù)的地址范圍已被實現(xiàn),也即真正地被映射到 RAM 單元上。(2)used=0,則說明這段連續(xù)的地址范圍并未被系統(tǒng)所實現(xiàn),而是處于未使用狀態(tài)。

基于上述 memory_area_t 數(shù)據(jù)結(jié)構(gòu),整個 CPU 預(yù)留的 RAM 地址空間可以用一個 memory_area_t 類型的數(shù)組來表示,如下所示:

            memory_area_t memory_map[NUM_MEM_AREAS] = {

	[0 ... (NUM_MEM_AREAS - 1)] = {

		.start = 0,

		.size = 0,

		.used = 0

	},

};


          

?

(2) 內(nèi)存映射的檢測

下面我們給出一個可用來檢測整個 RAM 地址空間內(nèi)存映射情況的簡單而有效的算法:

            /* 數(shù)組初始化 */

for(i = 0; i < NUM_MEM_AREAS; i++)

	memory_map[i].used = 0;

/* first write a 0 to all memory locations */

for(addr = MEM_START; addr < MEM_END; addr += PAGE_SIZE)

	* (u32 *)addr = 0;

for(i = 0, addr = MEM_START; addr < MEM_END; addr += PAGE_SIZE) {

     /*

      * 檢測從基地址 MEM_START+i*PAGE_SIZE 開始,大小為

* PAGE_SIZE 的地址空間是否是有效的RAM地址空間。

      */

     調(diào)用3.1.2節(jié)中的算法test_mempage();

     if ( current memory page isnot a valid ram page) {

		/* no RAM here */

		if(memory_map[i].used )

			i++;

		continue;

	}

	

	/*

	 * 當(dāng)前頁已經(jīng)是一個被映射到 RAM 的有效地址范圍

	 * 但是還要看看當(dāng)前頁是否只是 4GB 地址空間中某個地址頁的別名?

	 */

	if(* (u32 *)addr != 0) { /* alias? */

		/* 這個內(nèi)存頁是 4GB 地址空間中某個地址頁的別名 */

		if ( memory_map[i].used )

			i++;

		continue;

	}

	

	/*

	 * 當(dāng)前頁已經(jīng)是一個被映射到 RAM 的有效地址范圍

	 * 而且它也不是 4GB 地址空間中某個地址頁的別名。

	 */

	if (memory_map[i].used == 0) {

		memory_map[i].start = addr;

		memory_map[i].size = PAGE_SIZE;

		memory_map[i].used = 1;

	} else {

		memory_map[i].size += PAGE_SIZE;

	}

} /* end of for (…) */


          

?

在用上述算法檢測完系統(tǒng)的內(nèi)存映射情況后,Boot Loader 也可以將內(nèi)存映射的詳細(xì)信息打印到串口。

3.2.3 加載內(nèi)核映像和根文件系統(tǒng)映像

(1) 規(guī)劃內(nèi)存占用的布局

這里包括兩個方面:(1)內(nèi)核映像所占用的內(nèi)存范圍;(2)根文件系統(tǒng)所占用的內(nèi)存范圍。在規(guī)劃內(nèi)存占用的布局時,主要考慮基地址和映像的大小兩個方面。

對于內(nèi)核映像,一般將其拷貝到從(MEM_START+0x8000) 這個基地址開始的大約1MB大小的內(nèi)存范圍內(nèi)(嵌入式 Linux 的內(nèi)核一般都不操過 1MB)。為什么要把從 MEM_START 到 MEM_START+0x8000 這段 32KB 大小的內(nèi)存空出來呢?這是因為 Linux 內(nèi)核要在這段內(nèi)存中放置一些全局?jǐn)?shù)據(jù)結(jié)構(gòu),如:啟動參數(shù)和內(nèi)核頁表等信息。

而對于根文件系統(tǒng)映像,則一般將其拷貝到 MEM_START+0x0010,0000 開始的地方。如果用 Ramdisk 作為根文件系統(tǒng)映像,則其解壓后的大小一般是1MB。

(2)從 Flash 上拷貝

由于像 ARM 這樣的嵌入式 CPU 通常都是在統(tǒng)一的內(nèi)存地址空間中尋址 Flash 等固態(tài)存儲設(shè)備的,因此從 Flash 上讀取數(shù)據(jù)與從 RAM 單元中讀取數(shù)據(jù)并沒有什么不同。用一個簡單的循環(huán)就可以完成從 Flash 設(shè)備上拷貝映像的工作:

             

while(count) {

	*dest++ = *src++; /* they are all aligned with word boundary */

	count -= 4; /* byte number */

};


          

?

3.2.4 設(shè)置內(nèi)核的啟動參數(shù)

應(yīng)該說,在將內(nèi)核映像和根文件系統(tǒng)映像拷貝到 RAM 空間中后,就可以準(zhǔn)備啟動 Linux 內(nèi)核了。但是在調(diào)用內(nèi)核之前,應(yīng)該作一步準(zhǔn)備工作,即:設(shè)置 Linux 內(nèi)核的啟動參數(shù)。

Linux 2.4.x 以后的內(nèi)核都期望以標(biāo)記列表(tagged list)的形式來傳遞啟動參數(shù)。啟動參數(shù)標(biāo)記列表以標(biāo)記 ATAG_CORE 開始,以標(biāo)記 ATAG_NONE 結(jié)束。每個標(biāo)記由標(biāo)識被傳遞參數(shù)的 tag_header 結(jié)構(gòu)以及隨后的參數(shù)值數(shù)據(jù)結(jié)構(gòu)來組成。數(shù)據(jù)結(jié)構(gòu) tag 和 tag_header 定義在 Linux 內(nèi)核源碼的include/asm/setup.h 頭文件中:

            /* The list ends with an ATAG_NONE node. */

#define ATAG_NONE	0x00000000

struct tag_header {

	u32 size; /* 注意,這里size是字?jǐn)?shù)為單位的 */

	u32 tag;

};

……

struct tag {

	struct tag_header hdr;

	union {

		struct tag_core		core;

		struct tag_mem32	mem;

		struct tag_videotext	videotext;

		struct tag_ramdisk	ramdisk;

		struct tag_initrd	initrd;

		struct tag_serialnr	serialnr;

		struct tag_revision	revision;

		struct tag_videolfb	videolfb;

		struct tag_cmdline	cmdline;

		/*

		 * Acorn specific

		 */

		struct tag_acorn	acorn;

		/*

		 * DC21285 specific

		 */

		struct tag_memclk	memclk;

	} u;

};


          

?

在嵌入式 Linux 系統(tǒng)中,通常需要由 Boot Loader 設(shè)置的常見啟動參數(shù)有:ATAG_CORE、ATAG_MEM、ATAG_CMDLINE、ATAG_RAMDISK、ATAG_INITRD等。

比如,設(shè)置 ATAG_CORE 的代碼如下:

            params = (struct tag *)BOOT_PARAMS;

	params->hdr.tag = ATAG_CORE;

	params->hdr.size = tag_size(tag_core);

	params->u.core.flags = 0;

	params->u.core.pagesize = 0;

	params->u.core.rootdev = 0;

	params = tag_next(params);


          

?

其中,BOOT_PARAMS 表示內(nèi)核啟動參數(shù)在內(nèi)存中的起始基地址,指針 params 是一個 struct tag 類型的指針。宏 tag_next() 將以指向當(dāng)前標(biāo)記的指針為參數(shù),計算緊臨當(dāng)前標(biāo)記的下一個標(biāo)記的起始地址。注意,內(nèi)核的根文件系統(tǒng)所在的設(shè)備ID就是在這里設(shè)置的。

下面是設(shè)置內(nèi)存映射情況的示例代碼:

            for(i = 0; i < NUM_MEM_AREAS; i++) {

		if(memory_map[i].used) {

			params->hdr.tag = ATAG_MEM;

			params->hdr.size = tag_size(tag_mem32);

			params->u.mem.start = memory_map[i].start;

			params->u.mem.size = memory_map[i].size;

			

			params = tag_next(params);

		}

}


          

?

可以看出,在 memory_map[]數(shù)組中,每一個有效的內(nèi)存段都對應(yīng)一個 ATAG_MEM 參數(shù)標(biāo)記。

Linux 內(nèi)核在啟動時可以以命令行參數(shù)的形式來接收信息,利用這一點我們可以向內(nèi)核提供那些內(nèi)核不能自己檢測的硬件參數(shù)信息,或者重載(override)內(nèi)核自己檢測到的信息。比如,我們用這樣一個命令行參數(shù)字符串"console=ttyS0,115200n8"來通知內(nèi)核以 ttyS0 作為控制臺,且串口采用 "115200bps、無奇偶校驗、8位數(shù)據(jù)位"這樣的設(shè)置。下面是一段設(shè)置調(diào)用內(nèi)核命令行參數(shù)字符串的示例代碼:

            char *p;

	/* eat leading white space */

	for(p = commandline; *p == ' '; p++)

		;

	/* skip non-existent command lines so the kernel will still

    * use its default command line.

	 */

	if(*p == '\0')

		return;

	params->hdr.tag = ATAG_CMDLINE;

	params->hdr.size = (sizeof(struct tag_header) + strlen(p) + 1 + 4) >> 2;

	strcpy(params->u.cmdline.cmdline, p);

	params = tag_next(params);


          

?

請注意在上述代碼中,設(shè)置 tag_header 的大小時,必須包括字符串的終止符'\0',此外還要將字節(jié)數(shù)向上圓整4個字節(jié),因為 tag_header 結(jié)構(gòu)中的size 成員表示的是字?jǐn)?shù)。

下面是設(shè)置 ATAG_INITRD 的示例代碼,它告訴內(nèi)核在 RAM 中的什么地方可以找到 initrd 映象(壓縮格式)以及它的大小:

            	params->hdr.tag = ATAG_INITRD2;

	params->hdr.size = tag_size(tag_initrd);

	

	params->u.initrd.start = RAMDISK_RAM_BASE;

	params->u.initrd.size = INITRD_LEN;

	

	params = tag_next(params);


          

?

下面是設(shè)置 ATAG_RAMDISK 的示例代碼,它告訴內(nèi)核解壓后的 Ramdisk 有多大(單位是KB):

            params->hdr.tag = ATAG_RAMDISK;

params->hdr.size = tag_size(tag_ramdisk);

	

params->u.ramdisk.start = 0;

params->u.ramdisk.size = RAMDISK_SIZE; /* 請注意,單位是KB */

params->u.ramdisk.flags = 1; /* automatically load ramdisk */

	

params = tag_next(params);


          

?

最后,設(shè)置 ATAG_NONE 標(biāo)記,結(jié)束整個啟動參數(shù)列表:

            static void setup_end_tag(void)

{

	params->hdr.tag = ATAG_NONE;

	params->hdr.size = 0;

}


          

?

3.2.5 調(diào)用內(nèi)核

Boot Loader 調(diào)用 Linux 內(nèi)核的方法是直接跳轉(zhuǎn)到內(nèi)核的第一條指令處,也即直接跳轉(zhuǎn)到 MEM_START+0x8000 地址處。在跳轉(zhuǎn)時,下列條件要滿足:

1. CPU 寄存器的設(shè)置:

  • R0=0;?

  • R1=機(jī)器類型 ID;關(guān)于 Machine Type Number,可以參見? linux/arch/arm/tools/mach-types。 ?

  • R2=啟動參數(shù)標(biāo)記列表在 RAM 中起始基地址;?

2. CPU 模式:

  • 必須禁止中斷(IRQs和FIQs);?

  • CPU 必須 SVC 模式;?

3. Cache 和 MMU 的設(shè)置:

  • MMU 必須關(guān)閉;?

  • 指令 Cache 可以打開也可以關(guān)閉;?

  • 數(shù)據(jù) Cache 必須關(guān)閉;

如果用 C 語言,可以像下列示例代碼這樣來調(diào)用內(nèi)核:

            void (*theKernel)(int zero, int arch, u32 params_addr) =

  (void (*)(int, int, u32))KERNEL_RAM_BASE;

……

theKernel(0, ARCH_NUMBER, (u32) kernel_params_start);


          

?

注意,theKernel()函數(shù)調(diào)用應(yīng)該永遠(yuǎn)不返回的。如果這個調(diào)用返回,則說明出錯。

?

4. 關(guān)于串口終端

在 boot loader 程序的設(shè)計與實現(xiàn)中,沒有什么能夠比從串口終端正確地收到打印信息能更令人激動了。此外,向串口終端打印信息也是一個非常重要而又有效的調(diào)試手段。但是,我們經(jīng)常會碰到串口終端顯示亂碼或根本沒有顯示的問題。造成這個問題主要有兩種原因:(1) boot loader 對串口的初始化設(shè)置不正確。(2) 運(yùn)行在 host 端的終端仿真程序?qū)Υ诘脑O(shè)置不正確,這包括:波特率、奇偶校驗、數(shù)據(jù)位和停止位等方面的設(shè)置。

此外,有時也會碰到這樣的問題,那就是:在 boot loader 的運(yùn)行過程中我們可以正確地向串口終端輸出信息,但當(dāng) boot loader 啟動內(nèi)核后卻無法看到內(nèi)核的啟動輸出信息。對這一問題的原因可以從以下幾個方面來考慮:

(1) 首先請確認(rèn)你的內(nèi)核在編譯時配置了對串口終端的支持,并配置了正確的串口驅(qū)動程序。

(2) 你的 boot loader 對串口的初始化設(shè)置可能會和內(nèi)核對串口的初始化設(shè)置不一致。此外,對于諸如 s3c44b0x 這樣的 CPU,CPU 時鐘頻率的設(shè)置也會影響串口,因此如果 boot loader 和內(nèi)核對其 CPU 時鐘頻率的設(shè)置不一致,也會使串口終端無法正確顯示信息。

(3) 最后,還要確認(rèn) boot loader 所用的內(nèi)核基地址必須和內(nèi)核映像在編譯時所用的運(yùn)行基地址一致,尤其是對于 uClinux 而言。假設(shè)你的內(nèi)核映像在編譯時用的基地址是 0xc0008000,但你的 boot loader 卻將它加載到 0xc0010000 處去執(zhí)行,那么內(nèi)核映像當(dāng)然不能正確地執(zhí)行了。

?

5. 結(jié)束語

Boot Loader 的設(shè)計與實現(xiàn)是一個非常復(fù)雜的過程。如果不能從串口收到那激動人心的"uncompressing linux.................. done, booting the kernel……"內(nèi)核啟動信息,恐怕誰也不能說:"嗨,我的 boot loader 已經(jīng)成功地轉(zhuǎn)起來了!"。

?

關(guān)于作者

詹榮開,研究興趣包括:嵌入式 Linux、Linux 內(nèi)核、驅(qū)動程序、文件系統(tǒng)等。您可以通過? zhanrk@sohu.com 連系他。

嵌入式系統(tǒng) Boot Loader 技術(shù)內(nèi)幕


更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機(jī)微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發(fā)表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 江都市| 南澳县| 平远县| 分宜县| 游戏| 定西市| 治县。| 昆山市| 玛多县| 中牟县| 汤原县| 烟台市| 巴彦淖尔市| 永平县| 天门市| 曲靖市| 太仆寺旗| 青河县| 兴城市| 溧阳市| 高邮市| 唐海县| 博罗县| 巨野县| 渑池县| 南汇区| 托克托县| 旬邑县| 新化县| 渝北区| 北票市| 太仆寺旗| 云阳县| 千阳县| 唐山市| 师宗县| 东安县| 鄂尔多斯市| 沅江市| 金华市| 红桥区|